Планетология

А  Б  В  Г  Д  Е  Ж  З  И  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я   

 

Юпитер. Строение и общие сведения

Юпитер возглавляет семейство планет-гигантов, включающее также Сатурн, Уран и Нептун. Группа планет-гигантов характеризуется низкой средней плотностью: от 0,70 г/см³ у Сатурна до 1,64 г/см³ у Нептуна. Это значительно меньше средней плотности Земли (5,52 г/см³) и других планет земной группы. Тем не менее, размеры гигантов так велики, что на их долю приходится 99,5 % всей массы планетной системы, или 445 масс ЗемлиЗ). Наиболее велика масса Юпитера: 318 МЗ, или 1/1047 массы Солнца. Практически вся кинетическая энергия вращения планет (как суточного, так и орбитального), а также весь момент импульса планетной системы приходится на планеты-гиганты. Более того, орбитальный момент импульса одного только Юпитера существенно превосходит собственный момент импульса Солнца, так что практически весь момент вращения Солнечной системы заключен в планетах-гигантах. (Правда, кинетическая энергия вращения все же сосредоточена в Солнце).

Низкая средняя плотность крупнейших из гигантов указывает на малую молекулярную массу основных составляющих, которыми могут быть только легкие водород и гелий. Именно из этих газов состоят атмосферы Юпитера и Сатурна. Вероятно, эти же элементы в основном заполняют их недра. Более высокая средня плотность Урана и Нептуна означает, что наряду с водородом и гелием в их состав в немалом количестве входят и более тяжелые элементы.

Несмотря на свои огромные размеры, планеты-гиганты получают от Солнца сравнительно мало тепла. Причина — их удаленность от Солнца и довольно высокое альбедо (около 0,5). Даже Юпитер поглощает солнечной энергии всего в 2,2 раза больше, чем Земля; а остальные гиганты — в десятки раз меньше. Поэтому у всех планет-гигантов поток внутреннего тепла сопоставим с потоком поглощаемой солнечной энергии (а у некоторых — даже превосходит его).

Состав, строение, низкая средняя плотность и быстрое вращение Юпитера типичны и для других гигантов. А вот особенностью Юпитера является малый наклон экватора к орбите, всего 3°. Вместе с малым эксцентриситетом орбиты это приводит почти к полному отсутствию смены времен года.

Юпитер — удобный объект астрономических наблюдений. Его противостояния повторяются каждые 399 сут. Размер Юпитера велик: он в 11,2 раза больше Земли по диаметру, в 1320 раз по объему и в 318 раз по массе. Сила тяжести на экваторе планеты в 2,36 раза больше, чем у Земли. У полюсов она еще больше на 16%. Благодаря огромной массе Юпитера значения первой и второй космических скоростей на высоте 1000 км от верхней границы облаков составляют, соответственно, 42 и 59 км/с. Период обращения спутника на такой круговой орбите составит всего 3 ч, несмотря на очень большую удаленность от центра планеты (72400 км). Но поскольку ближе к планете спутник обращаться не может, это минимальный орбитальный период в окрестности Юпитера, тогда как вокруг Земли можно облететь всего за 1,5 ч. Огромное значение второй космической скорости делают чрезвычайно сложной задачей создание спускаемого аппарата для Юпитера.

При огромном экваториальном радиусе (71400 км) Юпитер совершает оборот вокруг оси всего за 9 ч 55,5 мин. Точки экватора движутся со скоростью 12,6 км/с. Центробежная сила заметно деформирует Юпитер: его полярный диаметр на 7% меньше экваториального. Еще в XVIIв. стало известно, что Юпитер вращается не как твердое тело: его экваториальная зона совершает оборот быстрее остальных зон. Поэтому для отождествления деталей на диске Юпитера ранее использовали две системы координат: «систему I» с суточным периодом 9 ч 50 мин 30,003 с используют для экваториальной зоны до широты ±(10—15)°, а на более высоких широтах используют «систему II» с суточным периодом 9 ч 55 мин 40,632 с. Разумеется, это лишь средние периоды вращения указанных областей; внутри каждой из них угловая скорость немного изменяется вдоль широты, причем весьма замысловато. В последнее время предпочтительной считается «система III», связанная с вращением магнитного поля планеты, имеющим период 9 ч 55 мин 30 с.

Рис. 1. Улучшенное изображение
Юпитера на базе снимков
КА "Вояджер-1"

Вся видимая поверхность Юпитера и детали, по которым определены периоды вращения, — это довольно плотные облака. Они образуют многочисленные полосы желто-коричневых, белых, красных и голубоватых оттенков. Полосы, охватывающие планету,  как  параллели,  образуют системы темных поясов и светлых зон, сравнительно симметрично расположенных к северу и к югу от экватора.

Хотя пояса и зоны — постоянные образования на Юпитере, вид их довольно изменчив. Изменяется и общий оттенок Юпитера. Полосатая структура облачного покрова охватывает экваториальную часть планеты и доходит до широт ±40°. Севернее и южнее облака образуют поле с коричневыми и голубоватыми пятнами, по-видимому, циклонического характера, диаметром до 1 тыс. км.

Протяженность атмосферы Юпитера по разным оценкам составляет от 1 до 6 тыс. км. При первом из этих значений — 1000 км — давление на «дне» водородо-гелиевой атмосферы будет достигать 150 тыс. бар. Там должна начинаться зона плавного перехода газообразной, жидкой и твердой фаз в «поверхность» Юпитера, по некоторым расчетам раскаленную до 2000 K.

Толстый слой «жидкого водорода» действительно ведет себя как жидкость, хотя правильнее называть это состояние газожидким. Из-за высокой температуры водород Юпитера и других гигантов находится в сверхкритическом состоянии: водород не может быть жидкостью при температуре более 33 K. Здесь необходимо сделать оговорку.

Увеличение давления выше некоторого предельного приводит к разрушению электронных оболочек атомов. Вещество резко изменяет свои свойства. Так, при давлении около 1 млн бар (для Юпитера это глубина, по разным оценкам, от 12 до 20 тыс. км) возникает жидкий молекулярный водород. Его слой, вероятно, с примесью гелия, образует внешнее ядро планеты. Далее водород переходит в металлическое состояние с выделением теплоты фазового перехода. Это один из источников энергии в недрах планеты. При металлизации водорода могут возникнуть свое-эбразные растворы, например раствор гелия в металлическом водороде. Наконец, сам металлический водород тоже может быть твердым или жидким. Учет всех этих подробностей делает расчеты внутреннего строения планет-гигантов крайне сложными.

Плотность оболочек возрастает по направлению к центру планеты. Атмосфера Юпитера, толщина которой принята 1500 км, уплотняется в глубину. На дне атмосферы находится слой газожидкого водорода толщиной около 7000 км. На уровне 0,88 радиуса водород переходит в жидкомолекулярное состояние с резким увеличением плотности от 0,56 до 0,66 г/см³. Здесь давление и температура составляют 0,69 Мбар и 6500 K. Ниже, на уровне 0,77 радиуса (3 Мбар, 10000 K) водород переходит в жидкое металлическое состояние. Наряду с водородом и гелием в состав слоев входит небольшое количество тяжелых элементов. Общее количество водорода и гелия у Юпитера соответствует 225 и 70 массам Земли. Еще 20 масс Земли приходится на тяжелые элементы в центре планеты и отчасти в оболочках.

На внутреннее ядро Юпитера приходится не менее 5 масс Земли, а по диаметру оно примерно вдвое больше Земли. По составу ядро металло-силикатное и, возможно, включает воду, аммиак и метан. Предполагают, что внутреннее ядро окружено слоем гелия или растворов гелия. Температура в центре планеты близка к 20000 К, а давление около 50 Мбар. Похожее строение имеет и Сатурн, однако уровень внешней границы металлического водорода у него находится у 0,49 радиуса, а граница внутреннего ядра — у 0,15 радиуса. Температура и давление в центре Сатурна, согласно расчетам, 17000 K и 23 Мбар.

На уровне 0,91 радиуса Юпитера, ниже его «океанической» поверхности, давление и температура достигают значений, достаточных для появления в веществе свободных электронов, обеспечивающих электрическую проводимость. По-видимому, начиная с этого уровня формируется сильное магнитное поле, обусловленное быстрым вращением Юпитера и движениями проводящей среды в его недрах. Поле несколько напоминает земное, но намного сильнее его. Дипольная составляющая создает на уровне облачного слоя напряженность 4-5 Гс (на Земле 0,35 Гс), а в районах магнитных полюсов Юпитера — 11 и 14 Гс. Ось диполя на 11° наклонена к оси вращения планеты (почти как у Земли!). Направление полюсов обратно земному. Значительную напряженность поля имеют компоненты более сложного характера с числом полюсов 4 и 8 — квадрупольная и октупольная, магнитные моменты которых составляет 22 и 18% от дипольного. Все это создает сложную картину магнитного поля планеты: множество магнитных полюсов,  из  которых два  (северный  и южный) примерно в 5 раз сильнее остальных.

Радиационные пояса Юпитера превышают земные во много раз по напряженности поля и размерам, а с ночной стороны магнитный шлейф Юпитера тянется на многие сотни миллионов километров и достигает орбиты Сатурна.

Рис. 2. Радиоизображение
Юпитера: яркие области —
радиоизлучение
радиационных поясов

В 1960-х гг. было обнаружено дециметровое радиоизлучение Юпитера. Оно имеет в значительной мере нетепловой характер (т.е. не связано с тепловым излучением планеты). Как известно, движение электронов в магнитных полях сопровождается электромагнитным излучением. Его называют циклотронным, если кинетическая энергия электронов меньше 0,5 МэВ, т. е. меньше энергии покоя электрона (mес²). В случае, если электроны релятивистские, т. е. их энергия намного больше 0,5 МэВ, излучение называют синхротронным. Долго оставалось неясным, к какому из этих типов относится дециметровое радиоизлучение Юпитера. В 1964 г. было показано, что оно исходит из пространства, намного превышающего диаметр Юпитера, причем наиболее интенсивно излучают две области: с востока и с запада от планеты.

С помощью космических аппаратов удалось установить, что магнитосфера и радиационные пояса Юпитера — это гигантский «природный ускоритель» заряженных частиц, в действии которого принимают участие природные спутники планеты. Этот ускоритель представляет собой тороидальный пояс, наклоненный, к экваториальной плоскости планеты в соответствии с наклоном оси магнитного диполя и вращающийся вместе с магнитосферой. Наиболее близкая к планете часть магнитосферы, в пределах 20 радиусов планеты, вращается вместе с дипольной составляющей магнитного поля (период 9 ч 55 мин 29,7 с). Радиационный пояс охватывает пространство от 1,5 до 6 радиусов планеты. Энергия электронов, захваченных в радиационных поясах и ускоренных в них, лежит в пределах от 3 до 30 МэВ. Дециметровое радиоизлучение, имеющее непрерывный, спокойный характер, генерируется именно в этих поясах электронами с энергией около 17 МэВ. Таким образом, дециметровое излучение Юпитера относится к синхротронному типу.

Вместе с тем, от планеты исходит и более длинноволновое излучение. В 1954 г., когда в США вводили в действие новый радиотелескоп, на выходе тщательно проверенной аппаратуры время от времени появлялись сильнейшие периодические помехи. Всплески повторялись с более или менее правильными интервалами на длине волны 13,5 м. Вскоре удалось установить, что искать этот источник на Земле бесполезно. Мощные помехи шли от Юпитера.

Экспериментаторы даже утверждали, что излучение Юпитера можно принимать на вполне определенных длинах волн: 29,7; 20; 18,2; 16,7; 15,5; 13,5 и 11,4 метров, и что даже через несколько месяцев таинственные радиосигналы появляются на тех же частотах. Подобно сигналам наших радиопередатчиков, «сигналы Юпитера» занимают узкую полосу частот: от 5 до 50 кГц.

Когда была применена радиоаппаратура с высоким временным разрешением, удалось установить, что в ряде случаев сигналы имеют сложную внутреннюю структуру: импульсы длительностью в тысячные доли секунды разделены паузами в сотые доли, причем амплитуда меняется от импульса к импульсу, но остается постоянной в пределах одного импульса. Очень похожую структуру имеют сигналы некоторых специальных радиостанций Земли, использующих особую кодово-импульсную модуляцию.

Долгое время кольцо считалось привилегией Сатурна. Когда у всех планет-гигантов открыли кольца разной степени сохранности, появилась новая гипотеза об относительной недолговечности планетных колец, которые рождаются в разрушительных столкновениях их спутников с кометами. Однако критики этой гипотезы неизменно приводили такое возражение: почему же мы не видим самих столкновений и прочих катастроф? В 1994 г. положение изменилось радикально.

В начале 1993 г. была открыта странная комета, названная по фамилиям первооткрывателей «кометой Шумейкеров-Леви-9». Она представляла собой около 20 отдельных кометных тел, вытянувшихся цепочкой. Судьба кометы была предсказана незамедлительно: в 1994 г. произойдет небесная катастрофа примерно таких же масштабов, как та, что случилась 65 млн лет назад на Земле, когда погибло около 80% всех видов животных. Раньше вероятность такого события представлялась ученым настолько малой, что его обычно воспринимали как исторический факт, не более. Но расчеты подтвердились. В июле 1994 г. обломки кометы, размерами, по разным оценкам, от 1 до 10 км, врезались в Юпитер со скоростью 60 км/с. Их огромная кинетическая энергия при внезапной остановке выделилась в виде теплового взрыва.                 

Рис. 3. Следы от ударов частей кометы
Шумейкера-Леви 9 на Юпитере.
Снимок космического телескопа Хаббл.

Для земных наблюдателей положение осложнялось тем, что столкновение произошло на не видимой с Земли стороне планеты. Но быстрое вращение Юпитера позволило увидеть свежие следы столкновения, которые сохранились в атмосфере планеты надолго. Обломки кометы врезались в нее с 16 по 22 июля 1994 г. Энергия взрыва фрагмента G была оценена как эквивалент 6 млн водородных бомб по одной мегатонне каждая. На рис. 3 можно видеть, как выглядел след этого взрыва через 45 мин. Следы взрыва более темные, чем окружающий фон облаков, но в полосе метана они светлее. Тонкое кольцо вокруг центра лишь на 1/5 меньше диаметра земного шара. Фрагмент G входил с юга, под углом 45°. Широкая темная дуга справа образована,  по-видимому,  продуктами выбросов, направленных в сторону удара. На снимках виден также след, оставленный фрагментом D. Фрагменты кометы оставили цепь подобных следов меньших размеров на облачной поверхности Юпитера. Взрывы происходили достаточно глубоко в атмосфере; на это указывают радиальные лучи на снимке. Продукты взрыва поднялись над лимбом планеты в виде полусферы и примерно через 20 мин превратились в полоску над горизонтом.

В то время как в обычных наблюдениях сера на Юпитере не обнаруживается, в продуктах взрыва установлено присутствие большого количества серосодержащих соединений, например, дисульфида углерода, аллотропа S2 и других. Научные данные о столкновении кометы Шумейкеров-Леви-9 с Юпитером останутся уникальным материалом надолго, возможно даже, на тысячелетия.

Орбиты двух ближайших к Юпитеру спутников, небольших тел Метис и Адрастея, проходят по внешнему краю удивительного образования — кольца Юпитера, совершенно не похожего на кольцо Сатурна. Его внешняя граница проходит на расстоянии 128 тыс. км от центра планеты, а толщина не более нескольких километров. Обнаружили это кольцо в 1979 г. с помощью зондов «Вояджер», хотя его существование предполагалось и раньше.

Кольцо состоит из частиц микронных размеров, об этом говорит сильное рассеяние ими света вперед, в направлении его падения (крупные частицы отражают свет назад). Именно поэтому кольцо лучше всего видно на снимках, сделанных, когда аппарат находился за Юпитером, а кольцо наблюдалось в контражуре. Плотность кольца так мала, что оно в тысячи раз прозрачнее хорошего стекла. Ширина наиболее плотной его части около 5200 км, но эта оценка условна, так как пылевая материя присутствует глубоко внутри кольца и доходит, видимо, до верхних этажей атмосферы Юпитера.

Слабый свет, рассеиваемый кольцом в направлении к Солнцу и Земле, удаленность Юпитера и положение экватора, близкое к плоскости эклиптики, делают его наблюдение с Земли практически невозможным — наблюдатель фактически находится в плоскости кольца. Предполагают, что именно Метис и Адрастея поставляют кольцу микропылинки. Эти же спутники своим гравитационным воздействием формируют резкую внешнюю границу кольца.

 

Источники

 

См. также

 

Информация

Итак, как говорится, "Поехали!".

01.01.10 сайт "Космический горизонт" начинает принимать посетителей.
Планов по развитию очень много, а уж как все получится - посмотрим.

 
смотреть

Вывоз шаттла Discovery на стартовую площадку
смотреть

смотреть

Полет над марсианским каньоном Эхус
смотреть

смотреть

Полет космического корабля Mercury 6 (Friendship 7)
смотреть

Все видео