Космонавтика

A  B  C  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z 
А  Б  В  Г  Д  Е  Ж  З  И  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я   

 

Конструкция космического корабля Аполлон

Основное назначение космического корабля Apollo — доставка астронавтов на Луну; также были совершены беспилотные полёты и управляемые околоземные полёты; модификации «Аполлона» использовались для доставки 3 экипажей на орбитальную станцию «Скайлэб» и для стыковки с советским космическим кораблём «Союз-19» по программе «Союз» - «Аполлон».

Космический корабль Apollo состоит из основного блока (спускаемый на Землю командный отсек экипажа и служебный отсек) и лунного модуля (посадочная и взлётная ступени), в котором астронавты совершают посадку и стартуют с Луны, а также системы аварийного спасения (САС).

Таблица 1. Номинальный вес и размеры корабля Apollo.

  Вес, кг
Длина, м
Диаметр, м
Командный отсек (без САС)
5470—5500 3,43
3,920
Служебный отсек
22700—22800 4,0
3,910
Лунный корабль
14500
7,6
10 (шасси выпущено)
Переходник крепления Apollo к ступени S-IVB
1700—1800    

Командный отсек

Рис. 1. Космический
корабль Аполлон

Командный отсек является центром управления полетом. Все члены экипажа в течение полета находятся в командном отсеке, за исключением этапа высадки на Луну. Командный отсек — единственная часть системы Saturn—Apollo, в которой экипаж возвращается на Землю после полета на Луну. Служебный отсек несет основную двигательную установку и системы обеспечения корабля Apollo.

Командный отсек корабля Apollo фирмы North American Rockwell (США) имеет форму конуса со сферическим основанием, диаметр основания 3920 мм, высота конуса 3430 мм, угол при вершине 60°, номинальный вес 5500 кг.

Командный отсек имеет герметическую кабину с системой жизнеобеспечения экипажа, систему управления и навигации, систему радиосвязи, систему аварийного спасения и теплозащитный экран.

Конструктивно командный отсек выполнен в виде двух оболочек. Внутренняя оболочка из алюминиевых сотовых профилированных панелей толщиной 20—38 мм, сварной конструкции — герметическая кабина экипажа со свободным объемом 6,1 м³; внешняя оболочка из профилированных сотовых панелей толщиной 15—63 мм, сваренных из листовой нержавеющей стали толщиной 0,2—1 мм. Внешняя оболочка, образующая тепловой барьер, защищающий гермокабину экипажа, состоит из трех частей: переднего экрана, экрана гермокабины и заднего экрана, крепящихся к гермокабине двутавровыми силовыми элементами из стекловолокна, изолирующими гермокабину от теплопроводности и температурных напряжений. Дополнительная теплоизоляция обеспечивается слоем стекловолокна между оболочками.

Абляционное теплозащитное покрытие внешней оболочки командного отсека сотовой конструкции из фенольного найлона с заполнителем из эпоксидной смолы с кварцевыми волокнами и микропузырьками. Абляционное покрытие переменной толщины от 8 до 44 мм приклепывается к внешней оболочке фенольным клеем.

В передней негерметизируемой части командного отсека размещены стыковочный механизм и парашютная система посадки, в средней части 3 кресла астронавтов, пульт управления полетом и системой жизнеобеспечения и радиооборудование; в пространстве между задним экраном и гермокабиной размещено оборудование реактивной системы управления (РСУ).

Стыковочный механизм и деталь лунного корабля с внутренней нарезкой совместно обеспечивают жесткую стыковку командного отсека с лунным кораблем и образуют туннель для перехода экипажа из командного отсека в лунный корабль и обратно.

Стыковочный механизм состоит из стыковочного кольца с герметизирующим уплотнением и 12 автоматическими замками, узла штыря на командном отсеке и стыковочного приемного конуса на лунном корабле (рис. 2).

Рис. 2. Узел стыковки командного отсека с лунным кораблем

Жесткое соединение после стыковки обеспечивается, когда штырь войдет в приемный конус, и кольцо туннеля лунного корабля встанет на автоматические замки. Закрытие замков обеспечивает герметичность соединения. Если один из замков не закрылся автоматически, экипаж закрывает его вручную. Давление по обе стороны приемного конуса выравнивается через клапан, снимается штырь и приемный конус, открывается люк лунного корабля и образуется туннель между командным отсеком и лунным кораблем.

 

Система жизнеобеспечения экипажа корабля Apollo

Система жизнеобеспечения экипажа космического корабля Apollo разработана и изготовлена фирмой Airsearch (США). Система обеспечивает поддержание в кабине корабля температуры в пределах 21—27 °С, влажности от 40 до 70% и давления 0,35 кг/см². При подготовке к старту и при старте атмосфера в кабине состоит из 60% кислорода и 40% азота, в полете эта смесь стравливается и заменяется чистым кислородом.

Система рассчитана на 4-суточное увеличение продолжительности полета сверх расчетного времени, потребного для экспедиции на Луну и поэтому предусматривается возможность регулировки и ремонта силами экипажа, одетого в скафандры.

Имеется аварийная кислородная система, которая включается автоматически и обеспечивает подачу кислорода при падении давления в кабине, например при пробое кабины метеоритом.

Криогенной установкой кислород подается в кабину через регулятор, поддерживающий давление от 0,35 до 0,38 кг/см². Максимальная допустимая утечка кислорода из кабины 0,227 кг/ч. Система может компенсировать утечку кислорода до 0,3 кг/мин, которая возникает при пробое в стене кабины площадью 3 см². В таком случае возросшая подача кислорода вызывает автоматическое открытие клапана подпитывающего резервуара с газообразным кислородом. При максимальной подаче в кабине в течение 5 мин будет сохраняться расчетное давление, за это время экипаж должен успеть одеть скафандры или заделать отверстие и устранить утечку кислорода из кабины.

В подпитывающем резервуаре кислород находится под давлением 70 кг/см². Подпитывающая система на жидком кислороде не применяется, так как требуется дополнительное время для преобразования жидкого кислорода в газообразный и система становится инертной. Кислород из подпитывающей системы с давлением 1,4 кг/см² используется для вытеснительной подачи воды и гликоля из баков в агрегаты системы.

Вентиляционная система имеет 4 вентилятора, 2 установлены в кабине и 2 включены в систему скафандров. Расход, обеспечиваемый кабинными вентиляторами 2,43 м³/мин, а вентиляторами скафандров 0,945 м³/мuн. Общая потребляемая вентиляторами мощность 85 вт. Кислород в скафандры подается через систему жиклеров. Отработанный газ прогоняется сквозь фильтры и поглотители СО2. Контроль за концентрацией двуокиси углерода в кабине осуществляется чувствительным элементом, действие которого основано на затухании ИК-лучей в атмосфере СO2. Поглотители СO2 помещаются в нескольких кассетах, рассчитанных на работу в течение 24 ч каждая. Экспедиция на Луну требует 20 кассет. Две кассеты работают параллельно, одна заменяется через каждые 12 ч.

Отработанный газ для очистки пропускается через 2 параллельно работающих поглотителя, но система сконструирована так, что весь отработанный газ будет пропущен через один поглотитель, если второй окажется неисправным.

Кассеты с гидроокисью лития и 3-мм слоем активированного древесного угля имеют площадь 52 см² и толщину 12,5 см. После очистки кислород проходит через теплообменники скафандров, влага удаляется конденсированием.

Капли воды захватываются водопоглощающими лентами. передвигающимися между теплообменником и осушительной установкой.

Система охлаждения имеет 2 изолированных и полностью дублирующих друг друга гликолевых контура с испарителями. Выбор и включение контуров производятся астронавтами вручную. Гликоль охлаждается в теплообменниках и дополнительное охлаждение происходит в испарителе. Прокачивается гликоль тремя насосами с магнитной муфтой, число оборотов крыльчатки 12 000 об/мин, давление на выходе из насоса 2,1 кг/см², расход 90 кг/ч, мощность 35 Вт.

В процессе квалификационных испытаний система жизнеобеспечения прошла проверку, имитирующую 14-суточный полет корабля с экипажем из трех человек.

Фирма поставляет систему скомпанованной в четырех контейнерах, удобных для эксплуатации и обслуживания.

 

Система аварийного спасения фирмы North American Rockwell (США)

Если возникнет аварийная ситуация при старте ракеты-носителя Saturn V или потребуется прекратить полет в процессе выведения корабля Apollo на орбиту ИСЗ, спасение экипажа осуществляется отделением командного отсека от ракеты-носителя с последующей посадкой его на Землю на парашютах.

Система аварийного отделения командного отсека состоит из титановой фермы, на которой укреплено 3 пороховых ракетных двигателя, один для отделения командного отсека от ракеты-носителя, другой для управления ориентацией в плоскости тангажа и третий для отделения фермы системы аварийного спасения от командного отсека.

Системы аварийного спасения снабжена двумя аэродинамическими поверхностями длиной 0,61 м и шириной 0,46 м, ориентирующими отделившийся командный отсек днищем по направлению полета.

Механизм системы отделения состоит из четырех пироболтов с двумя запальными устройствами в каждом.

Парашютная система посадки имеет 2 конических ленточных тормозных парашюта диаметром по 4,2 м, 3 ленточных парашюта диаметром по 2,2 м, 3 главных парашюта диаметром по 25,2 м.

Системы аварийного, спасения имеет 3 режима работы в диапазоне высот 0—9, 9—30 и 30—90 км. В случае возникновения аварийной ситуации на начальном этапе работы первой ступени, когда фактор времени имеет решающее значение, система спасения приводится в действие автоматически по сигналу системы обнаружения неисправностей. Такими ситуациями являются падение тяги у двух или более ЖРД первой ступени и большая угловая скорость ракеты-носителя (более 3 град/сек по тангажу и рысканию и более 20 град/сек по крену), появление которых обычно связано с серьезной неисправностью двигателей.

Во всех случаях последовательность срабатывания системы в течение первых нескольких секунд одинакова.

  1. Включение системы спасения автоматически или вручную.
  2. Отсечка топлива двигателей ракеты-носителя (только через 30 сек после старта).
  3. Разделение командного и служебного отсеков.
  4. Включение основного РДТТ и РДТТ управления ориентацией
  5. Выпуск аэродинамических поверхностей через 11 сек после включения РДТТ.

Парашютная система начинает работать через 16 сек после включения системы спасения или на высоте 7320 м, если полет прекращен на высоте более 9 км.

При прекращении полета на высоте более 30 км после отсечки тяги основного РДТТ экипаж с помощью РСУ сообщает аппарату угловую скорость в плоскости тангажа, чтобы предотвратить возникновение нерасчетной балансировки и неблагоприятных перегрузок.

Таблица 2. Основные характеристики РДТТ САС фирмы Lockheed (США):

Длина, м 4,64
Диаметр, м 0,66
вес топлива, т 1,45
вес двигателя, т 2,18
тяга, т 70
суммарный импульс, т·сек 253
ускорение командного отсека, м/сек² 90

Решающее влияние на траекторию полета командного отсека с системой аварийного спасения оказывает направление вектора тяги основного РДТТ относительно центра масс аппарата. РДТТ имеет 4 сопла, оси которых составляют угол 35° с осью аппарата. Вектор тяги составляет с осью аппарата угол 2,75°, который выверяется с точностью ±0,3° специальным оптическим устройством.

РДТТ отстрела системы аварийного спасения имеет максимальную тягу на уровне моря 14,6 т и продолжительность работы 1 сек. С помощью этого двигателя производится отделение аварийной системы и защитного конуса в нормальном полете и при аварийной ситуации перед началом работы парашютной системы. Сброс системы аварийного спасения от работающей ракеты-носителя обеспечивается наклоном вектора тяги РДТТ на 4° относительно оси аппарата, что достигается путем установки двух сопел разных размеров.

Система связи командного отсека обеспечивает:

  • двухстороннюю микрофонную связь экипажа с Землей;
  • передачу с борта корабля телеметрической информации и прием команд с Земли;
  • прием с Земли и ретрансляцию на станции слежения закодированного шума на несущей частоте для определения курса и дальности корабля;
  • передачу на Землю телевизионных изображений.

Для этих целей на командном отсеке установлена унифицированная в S-диапазоне и две УКВ приемо-передающих радиостанции. Антенная система состоит из четырех малонаправленных антенн и одной остронаправленной. Последняя имеет 4 параболических излучателя диаметром по 80 см, смонтирована на служебном отсеке и поворачивается в рабочее положение после выхода корабля на траекторию полета к Луне.

 

Служебный отсек

Служебный отсек корабля Apollo фирмы North American Pockwell (США) имеет форму цилиндра длиной 394,3 см и диаметром 391,4 см. С учетом длины сопла маршевого ЖРД, которое выходит наружу из корпуса, общая длина служебного отсека 791,6 см. От момента старта до входа в атмосферу служебный отсек жестко соединен с командным отсеком и образуют основной блок корабля Apollo. Перед входом в атмосферу командный отсек отделяется от служебного отсека.

Общий вес служебного отсека 23,3 т, в том числе 17,7 т топлива. В отсеке размещена маршевая двигательная установка с ЖРД фирмы Aerojet General (США), ЖРД системы реактивного управления фирмы Marquardt (США), топливные баки и агрегаты двигательных установок и энергетическая установка на водородо-кислородных топливных элементах.

Служебный отсек обеспечивает все маневры корабля на траектории полета к Луне, коррекцию траектории, выходи на орбиту ИСЛ, переход с орбиты ИСЛ на траекторию полета к Земле и коррекцию траектории возвращения.

Корпус отсека имеет слоистую конструкцию: соты из алюминиевого сплава между двумя листами алюминия. Корпус подкреплен двумя шпангоутами, связанными шестью стенками из алюминиевого сплава со специальной обработкой, которые воспринимают все основные нагрузки служебного отсека. В стенки корпуса вмонтированы трубки радиатора системы терморегулирования, по которым для отвода тепла циркулирует водяной раствор гликоля.

Регулирование температуры внешней поверхности корпуса служебного отсека обеспечивается соответствующей окраской: часть поверхности окрашена составом с высоким коэффициентом отражения, часть — составом с высоким коэффициентом поглощения. Донная часть корпуса покрыта теплозащитным экраном, предохраняющим оборудование отсека от нагрева выхлопными газами при работе маршевого двигателя.


Лунный корабль

Лунный корабль фирмы Grumman Aircraft Engineering Corp. (США) имеет две ступени: посадочную и взлетную. Посадочная ступень, оборудованная самостоятельной двигательной установкой и шасси, используется для снижения лунного корабля с орбиты ИСЛ и мягкой посадки на лунную поверхность. Взлетная ступень с герметической кабиной для экипажа и самостоятельной двигательной установкой перевозит астронавтов с поверхности Луны на орбиту ИСЛ в командный отсек (рис. 3). Ступени соединены четырьмя взрывными болтами.

Рис. 3. Лунный модуль корабля Apollo

Взлетная ступень имеет 3 основных отсека: отсек экипажа, центральный отсек и задний отсек оборудования (рис. 4). Герметизируются только отсек экипажа и центральный отсек, все остальные отсеки лунного корабля негерметизированы. Объем герметической кабины 6,7 м³, давление в кабине 0,337 кг/см². Высота взлетной ступени 3,76 м, диаметр 4,3 м. Конструктивно взлетная ступень состоит из шести узлов: отсек экипажа, центральный отсек, задний отсек оборудования, связка крепления ЖРД, узел крепления антенн, и тепловой и микрометеорный экран. Цилиндрический отсек экипажа диаметром 2,35 м, длиной 1,07 м (объемом 4,6 м³) полумонококовой конструкции из хорошо сваривающихся алюминиевых сплавов марок 2219—Т8751, 2210—Т81, 2239— Т851, имеющих изотропные характеристики, предел прочности на растяжение 44,3 кг/мм², предел текучести 35,1 кг/мм², одинаковые во всех направлениях, минимальное удлинение 5%.

Рис. 4. Взлетная ступень лунного модуля

Два рабочих места для астронавтов оборудованы пультами управления и приборными досками, системой привязи астронавтов, двумя окнами переднего обзора, окном над головой для наблюдения за процессом стыковки, и телескопом в центре между астронавтами.

В передней стенке герметического отсека экипажа кроме двух треугольных окон переднего обзора имеется квадратный люк, открывающийся внутрь, рамером 0,81 x0,81 м для выхода и входа экипажа. Внешняя полумонококовая конструкция вокруг герметических отсеков спроектирована так, что воспринимает все нагрузки взлетной ступени и изолирует кабину от напряжений. Отсек взлетного ЖРД образован двумя бимсами, проходящими под нижней палубой центрального отсека.

Туннельное кольцо, находящееся сверху взлетной ступени, соединяется со стыковочным кольцом командного отсека. Туннель диаметром 0,81 м проходит через центральный отсек взлетной ступени и используется для перехода экипажа из командного отсека в лунный корабль. Верхний люк туннеля взлетной ступени открывается внутрь и не может быть открыт при загерметизированной кабине и не состыкованной с командным отсеком.

Вся конструкция взлетной ступени окружена тепловым и микрометеорным защитным экраном из многослойного майлара, покрытого снаружи одним тонким слоем алюминия.

Посадочная ступень лунного корабля в виде крестообразной рамы из алюминиевого сплава несет на себе в центральном отсеке двигательную установку с посадочным ЖРД фирмы STL.

В четырех отсеках, образованных рамой вокруг центрального отсека, установлены топливные баки, кислородный бак, бак с водой, гелиевый бак, электронное оборудование, подсистема навигации и управления, посадочный радиолокатор и аккумуляторы.

Четырехногое убирающееся шасси, установленное на посадочной ступени, поглощает энергию удара при посадке корабля на поверхность Луны разрушающимися сотовыми патронами, установленными в телескопических стойках ног шасси; дополнительно удар смягчается деформацией сотовых вкладышей в центрах посадочных пят. Каждая пята снабжена щупом, сигнализирующим экипажу момент выключения ЖРД при контакте с лунной поверхностью. Шасси находятся в сложенном состоянии до отделения лунного корабля от командного отсека; после отделения по команде экипажа лунного корабля пиропатроны перерезают чеки у каждой ноги и под действием пружин шасси выпускается и становится на замки. Так же как взлетная ступень, посадочная ступень окружена тепловым и микрометеорным защитным экраном из многослойного майлара и алюминия. Высота посадочной ступени 3,22 м, диаметр 4,3 м.

Таблица 3. Весовые характеристики лунного модуля корабля Apollo.

  Посадочная ступень
Взлетная ступень
Сухой вес конструкции, кг
1725
1907
Топливо основных ЖРД, кг
8172
2361
Топливо реактивной системы управления, кг
-
284
Кислород, кг
-
23
Вода, кг
167
42
Гелий, кг
19
10
Итого, кг
10083
4627

Номинальный вес лунного корабля 14 710 кг.

Электрическая система лунного корабля состоит из четырех серебряно-цинковых аккумуляторов по 400 А-ч, установленных на посадочной ступени, и двух аккумуляторов по 310 А-ч на взлетной ступени; на взлетной и посадочной ступенях по две электроцепи распределения энергии, соединительные коробки и реле, две шины постоянного тока и 2 дублируемых инвертора на 400 Гц и 350 В·А. Если возникнет перегрузка (>2000 А), реле управления электроцепью автоматически выключают аккумулятор.

Установленные на взлетной ступени 2 контактора позволяют подключить любой аккумулятор к одной из шин или к обеим. Контроль мощности осуществляется коробкой соединительных реле. Перед разделением ступеней лунного корабля эти реле разрывают основной кабель между взлетной. и посадочной ступенями. Когда лунный корабль состыкован с командным отсеком, его источники электроэнергии могут обеспечить все потребители лунного корабля.

Система жизнеобеспечения состоит из блока регенерации и очистки атмосферы, систем подачи кислорода, регулирования давления в кабине и регулирования циркуляции воды, блока теплопередачи и кранов подразрядки кислородом и водой автономной ранцевой системы жизнеобеспечения астронавтов. Блок регенерации и очистки атмосферы имеет цепь охлаждения и вентиляции костюмов, уменьшение уровня окиси углерода, удаления запахов; циркуляционная система кабины обеспечивает вентиляцию атмосферы и регулирование давления в кабине. Сброс пара в космическое пространство из испарительной системы скафандров производится через испарительные патрубки.

Система подачи кислорода регулирует расход газообразного кислорода и поддержание давления в скафандрах и кабине. Система подачи кислорода посадочной ступени обеспечивает потребное количество кислорода в процессе посадки и пребывания на Луне; система подачи кислорода взлетной ступени рассчитана на обеспечение кислородом фазы взлета с Луны, встречи и стыковки с командным отсеком.

Вода для питья, охлаждения, тушения огня, приготовления пищи и пополнения водой автономной ранцевой системы жизнеобеспечения содержится в трех баках (подача осуществляется под давлением азота): один бак на 167 кг воды установлен на посадочной ступени и 2 бака с 47 кг воды каждый на взлетной ступени.

Блок теплопередачи имеет основной и дублирующий контуры, работающие на водном растворе гликоля. Основной контур обеспечивает регулирование температуры кислорода в кабине и скафандрах, а также регулирование температуры аккумуляторов и электронного оборудования, смонтированного на охлаждаемых панелях.

Если основной контур не работает, дублирующий контур охлаждает только электронное оборудование, а охлаждение скафандров обеспечивается испарительным водяным контуром. Избыток тепла сбрасывается испарением воды.

Система связи. На борту лунного корабля установлены 2 приемо-передатчика, работающие в S-диапазоне (1,55—5,2×106 кгц), 2 приемо-передатчика УКВ и соответствующие им антенны. Система осуществляет микрофонную связь, передачу и прием данных для определения траектории, передачу 270 телеметрических измерений, телевизионную передачу на Землю.

Микрофонная связь между лунным кораблем и наземными станциями ведется в S-диапазоне, между лунным кораблем и командным отсеком на УКВ.

На борту имеется 4-канальный магнитофон с отметкой времени и запасом ленты на 10 ч. Магнитофон с борта лунного корабля переносится в командный отсек и возвращается на Землю.

 

Усовершенствование корабля Apollo

После аварии с космическим кораблем Apollo-13 NASA провел усовершенствование служебного отсека, заключавшееся в следующем.

1. Установлен дополнительный кислородный бак в секции № 1 служебного отсека. Это позволит астронавтам в случае аварии, подобной происшедшей с Apollo-13, не пользоваться при возвращении к Земле бортовыми системами лунного корабля. Кроме того установка дополнительного кислородного бака позволяет обойтись без вентиляторов, в цепи которых произошло короткое замыкание, вызвавшее взрыв кислородного бака на Ароllо-13.

2. В секции № 4 установлен дополнительный аварийный серебряно-цинковый аккумулятор емкостью 400 А-ч весом 61,2 кг. В случае выхода из строя топливных элементов емкости аккумулятора должно хватить для питания систем основного блока в течение 3 сут, требуемых для возвращения от Луны к Земле.

3. Установлена дополнительная канистра с питьевой водой емкостью 9 кг.

4. Кроме перечисленных дополнений по рекомендации аварийной комиссии заменена тефлоновая изоляция электропроводки к кислородным бакам, и проводка, находящаяся в контакте с кислородом, помещена в стальной кожух; вместо двух нагревателей по 75 Вт установлено 3 по 50 Вт питаемых от двух независимых электроцепей; в каждом кислородном баке дополнительно установлен датчик температуры; модифицированы термостаты, которые должны отключать нагреватели при температуре 27 °С; измерители уровня из алюминия заменены измерителями из материала, не горящего в атмосфере кислорода; заменены все материалы в кислородных баках, могущие гореть в атмосфере кислорода, установлена бортовая система сигнализаций, предупреждающая экипаж об угрозе аварийной ситуации, подобно происшедшей на Apollo-13.

Установка дополнительного оборудования и изменения, внесенные в конструкцию, увеличили вес корабля Apollo на 227 кг; если на корабль дополнительно устанавливается луноход, весом 182 кг, то общий вес полезной нагрузки становится близким к предельному для энергетических возможностей ракеты-носителя Saturn V.

 

Источники

 

См. также

 

Информация

Итак, как говорится, "Поехали!".

01.01.10 сайт "Космический горизонт" начинает принимать посетителей.
Планов по развитию очень много, а уж как все получится - посмотрим.

 
смотреть

Вывоз шаттла Discovery на стартовую площадку
смотреть

смотреть

Полет над марсианским каньоном Эхус
смотреть

смотреть

Полет космического корабля Mercury 6 (Friendship 7)
смотреть

Все видео